2025年7月– date –
-
回帰分析におけるロバスト推定法:外れ値に強いモデルを構築する
回帰分析は、変数間の関係性を明らかにする強力な統計ツールである。しかし、データの中に「外れ値」と呼ばれる特異な値が存在する場合、通常の最小二乗法では分析結果が大きく歪められてしまうことがある。このような問題を解決し、より信頼性の高いモデ... -
不均一分散とその対処法:統計モデリングをより頑健にするために
統計モデリングを行う際、データの「分散」が均一であるという仮定を置くことがよくある。しかし、現実のデータではこの仮定が成り立たない、つまり「不均一分散」を示すケースが少なくない。不均一分散は、統計的推論の信頼性を損なう可能性があり、適切... -
重回帰分析における重み付き最小二乗法:データの潜在的な声を聴く
重回帰分析は、複数の説明変数を用いて目的変数を予測する強力な統計手法である。しかし、OLS(Ordinary Least Squares:通常の最小二乗法)を適用する際に、ある重要な仮定が満たされない場合、そのモデルの信頼性が損なわれることがある。それが「等分散... -
交互作用項のある回帰分析:有意な交互作用とサブグループ解析の記述方法
回帰分析を行う際、2つ以上の説明変数が従属変数に与える影響が、互いの水準によって異なる場合がある。このような現象を「交互作用(interaction)」と呼び、統計モデルに交互作用項を組み込むことで、より詳細な関係性を明らかにできる。 しかし、交互作... -
偏相関の二乗:その概念からRでの実践まで徹底解説!
この記事では、統計分析で重要な役割を果たす「偏相関の二乗」について掘り下げる。この指標が一体どのような概念であり、どのように計算されるのか、さらにはその異なる呼び名や日本語での表記についても整理する。加えて、具体的な例とRを用いた実践的な... -
重回帰分析と偏相関係数における多重共線性:その影響と対処法
統計分析において、複数の変数間の関係性を探ることは不可欠である。特に、ある結果(目的変数)が複数の原因(説明変数)によってどのように影響されるかを分析する際には、重回帰分析が強力なツールとなる。また、2つの変数間の純粋な関係性を知りたい場... -
交絡因子を考慮した回帰直線の差の検定:より深い洞察を得るために
データ分析において、複数のグループ間での関係性の違いを比較することは非常に重要だ。特に、ある従属変数と独立変数の関係が、別の要因(グループ)によってどのように異なるかを明らかにしたい場合、回帰直線の差の検定は強力なツールとなる。しかし、... -
Rで回帰直線の検定と信頼区間:lm関数を使わずに計算する
単回帰分析では、目的変数と説明変数の間に直線的な関係があるかを調べる。Rのlm関数を使えば簡単に分析できるが、その裏側にある計算ロジックを理解することも重要だ。この記事では、lm関数に頼らずに回帰直線の主要な要素、つまり回帰係数の推定、その検... -
回帰分析の奥深さ:$t$ 値の2乗と$F$ 値が等しい理由を解き明かす!
回帰分析は、変数間の関係性を明らかにする強力な統計ツールだ。その結果を解釈する際、$t$ 値や $F$ 値といった統計量を目にすることが多いだろう。特に、単回帰分析においては、回帰係数の $t$ 値の2乗が、回帰モデル全体の有意性を検定する $F$ 値と常... -
平均値・標準偏差・症例数からt検定を行う:BSDAパッケージのtsum.testを解説
データ分析の現場では、生データが手元になく、要約統計量(平均値、標準偏差、症例数)のみが与えられている状況で統計的検定を行う必要に迫られることがある。特に、2つのグループ間の平均値に有意な差があるかを検証するt検定は頻繁に用いられる。 Rに...