toukei-er– Author –
統計 ER ブログ執筆者
元疫学研究者
-
IPTWを用いた回帰モデル:なぜ標準誤差の推定がそんなに重要なのか?
因果推論の分野では、観察研究からバイアスの少ない効果を推定するために様々な手法が用いられる。その中でも、Inverse Probability of Treatment Weighting(IPTW)は、共変量の不均衡を調整し、治療群と対照群を「比較可能」にする強力なツールである。I... -
Rで作成するIPTWベースラインサマリー表:tableone とその他関数を使いこなす
疫学研究や臨床研究において、観察研究で因果推論を行う際には、治療群間の共変量バランスが取れていないことが大きな課題となる。この課題を解決するための強力な手法の一つが、IPTW (Inverse Probability of Treatment Weighting) である。IPTWを用いる... -
逆確率重み付け(IPTW)を用いた治療効果の推定:因果推論の基本と実践
「あの治療を受けていたら、どうなっていたのだろう?」多くの人が一度は抱く疑問だろう。医学研究や社会科学において、特定の介入(治療、政策、プログラムなど)がもたらす効果を正確に知ることは非常に重要である。しかし、現実の世界では、誰がどの介... -
回帰分析におけるロバスト推定法:外れ値に強いモデルを構築する
回帰分析は、変数間の関係性を明らかにする強力な統計ツールである。しかし、データの中に「外れ値」と呼ばれる特異な値が存在する場合、通常の最小二乗法では分析結果が大きく歪められてしまうことがある。このような問題を解決し、より信頼性の高いモデ... -
不均一分散とその対処法:統計モデリングをより頑健にするために
統計モデリングを行う際、データの「分散」が均一であるという仮定を置くことがよくある。しかし、現実のデータではこの仮定が成り立たない、つまり「不均一分散」を示すケースが少なくない。不均一分散は、統計的推論の信頼性を損なう可能性があり、適切... -
重回帰分析における重み付き最小二乗法:データの潜在的な声を聴く
重回帰分析は、複数の説明変数を用いて目的変数を予測する強力な統計手法である。しかし、OLS(Ordinary Least Squares:通常の最小二乗法)を適用する際に、ある重要な仮定が満たされない場合、そのモデルの信頼性が損なわれることがある。それが「等分散... -
交互作用項のある回帰分析:有意な交互作用とサブグループ解析の記述方法
回帰分析を行う際、2つ以上の説明変数が従属変数に与える影響が、互いの水準によって異なる場合がある。このような現象を「交互作用(interaction)」と呼び、統計モデルに交互作用項を組み込むことで、より詳細な関係性を明らかにできる。 しかし、交互作... -
偏相関の二乗:その概念からRでの実践まで徹底解説!
この記事では、統計分析で重要な役割を果たす「偏相関の二乗」について掘り下げる。この指標が一体どのような概念であり、どのように計算されるのか、さらにはその異なる呼び名や日本語での表記についても整理する。加えて、具体的な例とRを用いた実践的な... -
重回帰分析と偏相関係数における多重共線性:その影響と対処法
統計分析において、複数の変数間の関係性を探ることは不可欠である。特に、ある結果(目的変数)が複数の原因(説明変数)によってどのように影響されるかを分析する際には、重回帰分析が強力なツールとなる。また、2つの変数間の純粋な関係性を知りたい場... -
交絡因子を考慮した回帰直線の差の検定:より深い洞察を得るために
データ分析において、複数のグループ間での関係性の違いを比較することは非常に重要だ。特に、ある従属変数と独立変数の関係が、別の要因(グループ)によってどのように異なるかを明らかにしたい場合、回帰直線の差の検定は強力なツールとなる。しかし、...