回帰分析・線形回帰・重回帰– category –
-
重回帰分析における重み付き最小二乗法:データの潜在的な声を聴く
重回帰分析は、複数の説明変数を用いて目的変数を予測する強力な統計手法である。しかし、OLS(Ordinary Least Squares:通常の最小二乗法)を適用する際に、ある重要な仮定が満たされない場合、そのモデルの信頼性が損なわれることがある。それが「等分散... -
Rで回帰直線の検定と信頼区間:lm関数を使わずに計算する
単回帰分析では、目的変数と説明変数の間に直線的な関係があるかを調べる。Rのlm関数を使えば簡単に分析できるが、その裏側にある計算ロジックを理解することも重要だ。この記事では、lm関数に頼らずに回帰直線の主要な要素、つまり回帰係数の推定、その検... -
回帰分析の奥深さ:$t$ 値の2乗と$F$ 値が等しい理由を解き明かす!
回帰分析は、変数間の関係性を明らかにする強力な統計ツールだ。その結果を解釈する際、$t$ 値や $F$ 値といった統計量を目にすることが多いだろう。特に、単回帰分析においては、回帰係数の $t$ 値の2乗が、回帰モデル全体の有意性を検定する $F$ 値と常... -
重回帰分析の結果の書き方 ― 論文にはどの数値を書いたらよいか
教科書的には何を計算するかは決まっているが、論文にどの数値を掲載するかは決まっていない。 そういうときは、実例をもとに、まねするのが良いが、最低限の目安を示す。 回帰分析の結果の書き方の基本 一番大事な要素は、点推定値と95%信頼区間である。... -
EZR で多重代入法を行う方法
EZR で多重代入法を行いたい場合、どのようにしたらよいか EZR には、多重代入のメニューはないが、R スクリプト枠にスクリプトを書いていく方法で実行できる はじめに 欠損値(欠測値と同じ)があるデータセットにおいて、推定値にバイアスがかかると言わ... -
重回帰分析における当てはまりの良さに関するいくつかの指標の違いと使い分け
重回帰分析(以下、線形回帰も同義)には当てはまりの良さの指標としていくつかあるが、それらの違いと使い分けはどうしたらよいのか? 自由度調整済み決定係数の特徴 説明率とも言われる決定係数の説明変数の個数を考慮したバージョン 0 から 1 の間の値... -
決定係数が小さい場合の考え方
重回帰分析の評価指標の一つ、決定係数が小さいときに、どう考えたらよいか どのくらいの数値であったら、大丈夫なのだろうか 決定係数がどのくらいであれば意味があるか? 決定係数は、0.7 以上欲しいとか、0.5 でもよいとか、分野によっては 0.3 でもよ... -
標準化偏回帰係数の簡単な解説
標準化偏回帰係数(ひょうじゅんかへんかいきけいすう)とは何か? 一言で言えば、単位が異なる説明変数の、目的変数に対する影響力を比較したいときに、便利な数値と言える 順を追って、式なしでイメージだけでわかりやすく解説 標準化偏回帰係数の前に回... -
SPSS を使ってやりたい解析別重回帰分析の実行方法
SPSS で重回帰分析をしたい場合、どのようにすればよいか やりたいこと別にまとめてみた 説明変数が連続データの場合で、交絡因子調整が目的の場合 目的変数、説明変数ともに連続データで、交絡因子調整が目的の場合は、以下のように解析する 分析 → 回帰 ... -
G*Power で重回帰分析に必要なサンプル数を計算する方法
G*Power は、サンプルサイズや検出力を計算するソフトウェアである 重回帰分析のサンプルサイズや検出力を計算する方法の紹介 GPower で重回帰分析のサンプル数を計算する方法 重回帰分析のサンプル数を計算するときは、予想される決定係数を見積もる必要...