MENU

【無料プレゼント付き】学会発表・論文投稿に必要な統計を最短で学ぶことができる無料メルマガ

R でケンドールの順位相関係数を計算する方法

ケンドールの順位相関係数はどのように計算するか紹介する

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

目次

ケンドールの順位相関係数

ケンドール(Kendall)の順位相関係数 $ \tau $ は、順位を使わない相関係数である。

何を使うかというと、値の大小を使う。

変数Xと変数Yの相関を計算する際に、2つのX,Yペアを取り出す。

片方のペアが、もう片方のペアより、XもYも大きい、もしくはXもYも小さいという場合が+1とする。

そうでない場合を-1とする。

これを全部の組み合わせについて行う。

この合計を S とすると以下の式で書ける。

\begin{equation} S = \sum_{i \lt j} (\mathrm{sign} (x_j – x_i) \times \mathrm{sign} (y_j – y_i)) \end{equation}

+1の数と-1の数の差を、全部の組み合わせの数 $ D = \frac{n(n – 1)}{2} $ で割る。

これがケンドールの順位相関係数 $ \tau = \frac{S}{D} $ である。

つまり、順位は使わない順位相関係数ということである。

ケンドールの順位相関係数の計算 同じ値があった場合は?

2つのX,Yペアを取り出したとき、X同士、及び/又は、Y同士が同じ値であった場合はどうするのか?

分母の組み合わせ数から、同じ値のペア数を引くというふうに補正する。

詳しくは下記参考サイトの式を参照。

ケンドールの順位相関係数 | 統計用語集 | 統計WEB

これが、SPSSのクロス集計表の統計で登場するケンドールのタウbである。

クロス集計表の統計

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

ケンドールの順位相関係数を計算してみる

R で計算してみる。

Kendall パッケージを使用する。

library(Kendall)
x<-c(1.5,1.5,3,4,6,6,6,8,9.5,9.5,11,12)
y<-c(2.5,2.5,7,4.5,1,4.5,6,11.5,11.5,8.5,8.5,10)

x と y の散布図を書いてみると以下のようになる。

右肩上がりなので、x と y が同じ方向性であるので、プラスの値になることが予想される

ケンドールの順位相関係数を計算すると以下のようになる。

$ \tau = 0.553 $ なので、まずまずの相関と言える。

まとめ

ケンドールの順位相関係数の計算方法を簡単に紹介した。

順位は使わない相関係数である。

参考になれば。

参考サイト

ケンドールの順位相関係数 | 統計用語集 | 統計WEB

↓↓↓図として意味合いが理解したい人はこちら↓↓↓

ケンドールの順位相関係数 統計学入門

↓↓↓SPSSのケンドールのタウbの説明あり↓↓↓

クロス集計表の統計

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

リサーチクエスチョン探し?データ分析?論文投稿?、、、で、もう悩まない!

第1章臨床研究ではなぜ統計が必要なのか?計画することの重要性
  • 推定ってどんなことをしているの?
  • 臨床研究を計画するってどういうこと?
  • どうにかして標本平均を母平均に近づけられないか?
第2章:研究目的をどれだけ明確にできるのかが重要
  • データさえあれば解析でどうにかなる、という考え方は間違い
  • 何を明らかにしたいのか? という研究目的が重要
  • 研究目的は4種類に分けられる
  • 統計専門家に相談する上でも研究目的とPICOを明確化しておく
第3章:p値で結果が左右される時代は終わりました
  • アメリカ統計協会(ASA)のp値に関する声明で指摘されていること
  • そうは言っても、本当に有意差がなくてもいいの…?
  • なぜ統計専門家はp値を重要視していないのか
  • 有意差がない時に「有意な傾向があった」といってもいい?
  • 統計を放置してしまうと非常にまずい
第4章:多くの人が統計を苦手にする理由
  • 残念ながら、セミナー受講だけで統計は使えません。
  • インプットだけで統計が使えない理由
  • どうやったら統計の判断力が鍛えられるか?
  • 統計は手段なので正解がないため、最適解を判断する力が必要
第5章:統計を使えるようになるために今日から何をすれば良いか?
  • 論文を読んで統計が使えるようになるための5ステップ
第6章:統計を学ぶために重要な環境
  • 統計の3つの力をバランスよく構築する環境

以下のボタンをクリックして、画面に出てくる指示に従って、必要事項を記入してください。

この記事を書いた人

統計 ER ブログ執筆者

元疫学研究者

コメント

コメント一覧 (1件)

コメントする

目次