MENU

【無料プレゼント付き】学会発表・論文投稿に必要な統計を最短で学ぶことができる無料メルマガ

R でノンパラメトリック反復測定分散分析を行う方法

反復測定分散分析のノンパラメトリック法の解説

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

目次

反復測定分散分析のノンパラメトリック法 サンプルデータ準備

反復測定分散分析をノンパラメトリック法で行う方法を R のパッケージを使って解説する

R のパッケージは、nparLD というパッケージを使う

まず、nparLD パッケージのインストールと呼び出しを行う

R のスクリプトは以下の通り

install.packages("nparLD")
library(nparLD)

今回使用するサンプルデータは tree データセット

tree データセットは、反復測定が縦方向に並んでいるロング形式

ロング形式からワイド形式にしてグラフ作成する

EZR の標準メニューから、データセットのロングからワイド形式への変換を選ぶ

被験者ID、被験者内要因(繰り返し)要因、アウトカム変数を選択しOKする

被験者内要因は Factor 型(因子型)にしておく必要がある

事前に time.factor を作成しておいた

連続データを因子型にするには、アクティブデータセットから連続変数を因子に変換する、を選択する

time.factor という名前にした

反復測定分散分析のノンパラメトリック法 サンプルデータを図示してみる

反復測定データの折れ線グラフを選択する

反復測定したアウトカム変数 resp と、群別変数を指定してOKをクリック

グラフが以下のように書ける

反復測定アウトカムデータ resp 自体は、以下のようなヒストグラム分布をする変数

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

反復測定分散分析のノンパラメトリック法の実際

group で分割した、分割プロットデザインの反復測定分散分析を実行する

関数は nparLD()

カッコ内の最初はチルダで挟んだ Formula である

resp が反復測定アウトカムで、time が被験者内要因、 group が群間要因、それの主効果と交互作用を同時に投入している

被験者IDは subject = で指定する

結果の分散分析表を表示させると以下の通り

group の p 値は、0.096で、time の p 値は、<0.001 である

group と time の交互作用も p 値は小さく、0.007 であるので、交互作用があると考えるのがよさそう

交互作用が有意であるため、このあとは group ごとにデータを分けて、time の効果が同様かどうか確認していくというのがよいだろう

group 別にグラフを書く

D0 グループのグラフ

D1 グループのグラフ

D2 グループのグラフ

あまり違わないような気もするが、若干違うと言えば違うか

まとめ

反復測定分析をノンパラメトリック法で実行した

R の nparLD パッケージを使えば、解析可能だ

参考 PDF

公式マニュアル

nparLD: Nonparametric Analysis of Longitudinal Data in Factorial Experiments

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

リサーチクエスチョン探し?データ分析?論文投稿?、、、で、もう悩まない!

第1章臨床研究ではなぜ統計が必要なのか?計画することの重要性
  • 推定ってどんなことをしているの?
  • 臨床研究を計画するってどういうこと?
  • どうにかして標本平均を母平均に近づけられないか?
第2章:研究目的をどれだけ明確にできるのかが重要
  • データさえあれば解析でどうにかなる、という考え方は間違い
  • 何を明らかにしたいのか? という研究目的が重要
  • 研究目的は4種類に分けられる
  • 統計専門家に相談する上でも研究目的とPICOを明確化しておく
第3章:p値で結果が左右される時代は終わりました
  • アメリカ統計協会(ASA)のp値に関する声明で指摘されていること
  • そうは言っても、本当に有意差がなくてもいいの…?
  • なぜ統計専門家はp値を重要視していないのか
  • 有意差がない時に「有意な傾向があった」といってもいい?
  • 統計を放置してしまうと非常にまずい
第4章:多くの人が統計を苦手にする理由
  • 残念ながら、セミナー受講だけで統計は使えません。
  • インプットだけで統計が使えない理由
  • どうやったら統計の判断力が鍛えられるか?
  • 統計は手段なので正解がないため、最適解を判断する力が必要
第5章:統計を使えるようになるために今日から何をすれば良いか?
  • 論文を読んで統計が使えるようになるための5ステップ
第6章:統計を学ぶために重要な環境
  • 統計の3つの力をバランスよく構築する環境

以下のボタンをクリックして、画面に出てくる指示に従って、必要事項を記入してください。

この記事を書いた人

統計 ER ブログ執筆者

元疫学研究者

コメント

コメント一覧 (1件)

コメントする

目次