-
二元配置分散分析
R で二元配置分散分析を行う方法
Rで二元配置分散分析 はどうやるか? 二元配置は、二つの要因があるという意味。 二つの要因があるというのは、例えば、要因Aは3グループにわかれて、各グループごとに要因Bが1から5を持っている、みたいな状態だ。 Step by step でやってみたのと、lm() ... -
分散分析
R で一元配置分散分析を行う方法
Rで、一元配置分散分析を step by step で計算してみた。 lm() と Anova() を使えばあっという間だが、具体的な一つ一つの計算を自分で組み立ててみるとどうか? 教科書の例題に沿って確認した。 R で一元配置分散分析を実行するための例題データ サンプル... -
回帰分析・線形回帰・重回帰
R で回帰直線の差の検定を行う方法
二つのデータセットがあって、二つの回帰直線が描けたとき、そのあとどうすればいいか? そのあとは、傾きが同じと言えるか?さらには切片が同じと言えるか?と進んでいく。 二つの回帰直線の差を検定してみる。 回帰直線の差の検定のためのサンプルデータ... -
相関係数
R で相関係数のメタアナリシスを行う方法
相関係数を統合したい場合はどうやるか? R での方法。 個々の研究の相関係数と95%信頼区間の準備 使うデータは以下の通り。 r が相関係数。 n がサンプルサイズ。 r <- c(0.307,-0.01,0.300,0.119,0.194,0.248) n <- c(107,1524,154,6165,4138,1559... -
相関係数
R で相関係数検定の実行と信頼区間を計算する方法
R で相関係数の検定と推定は cor.test() でできるが、個々のデータが必要だ。 個々のデータを使わなくても、検定や推定はできないだろうか? 相関係数の検定 母相関係数 ρ(ロー) がゼロかどうかの検定。 スクリプトは以下の通り。 r がサンプルの相関係... -
メタアナリシス
R で平均値の差のメタ解析を行う方法
平均値の差のメタ解析のやり方を解説。 メタ解析のやり方解説のためのサンプルデータ メタ解析のやり方を解説するためのデータは以下の通り。 mが平均、sが標準偏差、nがサンプルサイズ。 n1 <- c(155,31,75,18,8,57,34,110,60) m1 <- c(55.0,27.0,6... -
テキストマイニング
R と MeCab でテキストマイニングを行う方法
Rでテキストマイニングするやり方。 MeCab と RMeCab を使う方法。 例として、ワードクラウドを描く方法を紹介。 テキストマイニングとは? テキストデータを名詞、動詞、形容詞など、濃い意味合いを持つ言葉と、助詞、助動詞、感嘆詞、疑問詞など意味合い... -
機械学習
R で主成分回帰と部分的最小二乗回帰を実行する方法
主成分回帰と部分的最小二乗回帰を R で実行する方法の解説 部分的最小二乗回帰とは 部分的最小二乗回帰の前に、主成分回帰を説明する。 主成分回帰(Principal Component Regression, PCR)は、主成分分析と回帰分析の融合。 主成分分析で情報の集約をし... -
主成分分析
R で主成分分析を行う方法
主成分分析は、たくさんの変数を、合成変数に集約する分析。 主役級の主成分から第一主成分、第二主成分、・・・と呼ばれる。 たくさんの変数を、いくつかの主成分でまとめると、情報がまとまって考えやすくなる。 Rで主成分分析を行う方法 princomp()を使... -
機械学習
R でリッジ回帰・ラッソ回帰・エラスティックネットを実行する方法
エラスティックネットを簡単に解説 R で実行する方法も解説 リッジ・ラッソ・エラスティックネットとは? 線形回帰モデルは、係数 β(パラメータ)を推定するときに最小二乗法を用いる。 通常の最小二乗法は、従属変数の実測値とモデルから計算された値と...