MENU

変化量の標準偏差を推定する場合に分散の加法性が成り立たないことについて

連続量の前後比較の際に、先行研究のデータ等から、変化量の標準偏差を知りたいと思うことがある。

しかし、たいていは変化量の標準偏差は掲載されていない。

前と後、別々の標準偏差から、変化量の標準偏差が分散の加法性を使って推定できないか?

>>もう統計で悩むのは終わりにしませんか? 

↑期間・数量限定で無料プレゼント中!

目次

変化量の標準偏差は掲載されていないことが多い

変化量、例えば、介入前後差の標準偏差が必要になることがある。

例えば、対応のあるt検定のサンプルサイズ計算の時には、前後差の標準偏差が必要だ。

しかし、論文にはたいてい介入前と介入後、別々の標準偏差が平均値と一緒に掲載されている。

それではその標準偏差から差の標準偏差を推定できないだろうか?

変化量の標準偏差推定に分散の加法性が使えないか?

分散の加法性とは?

分散の加法性とは、二つの変数を加えたり、変数間の差を取ったりした値の分散は、元の値の分散同士を足し合わせたものになるという性質だ。

変数 x+y の分散は、変数 x と変数 y の分散を足したものになる。

$$ V(x + y) = V(x) + V(y) $$

変数 x-y の分散も同じく、変数 x と変数 y の分散の和になる。

$$ V(x – y) = V(x) + V(y) $$

この法則を使えば、前後差 x-y の分散が、xの分散とyの分散から計算できるのではないか?

分散の加法性には条件がある

分散の加法性が成り立つには条件がある。

  1. 不偏分散では成り立たず、標本分散でのみ成り立つ。
  2. 変数 x と変数 y が独立である。

ということである。

つまり、介入前後のように同じ症例の場合、前後の測定値に相関があり、独立ではないため、分散の加法性は成り立たないのである。

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

分散の加法性が成り立つデータと成り立たないデータ

独立 2 群のデータの場合

独立 2 群で、2 群間に相関がない場合、測定値の散布図は以下のように完全にバラバラになる。

相関係数もゼロに限りなく近い。

このときに2変数の差と和の標本分散を計算すると以下のとおりである。

additionは x+y を意味している、difference は x-y である。

2つの標本分散の和と 和の標本分散 との差は、ほぼゼロになっている。

2つの標本分散の和と 差の標本分散 との差も、ほぼゼロである。

ちなみに、不偏分散では成り立たないとのことだが、不偏分散で計算しても、同様の結果であった。

「和の不偏分散」と「不偏分散の和」の差

「差の不偏分散」と「不偏分散の差」の差

対応のあるデータの場合

今回興味がある変化量などを計算する対応のあるデータの場合は、実際どのようになるか?

前後の変化量(対応のあるデータ)の間には相関がある。

同一人なので相関があることが普通である。

散布図で見ると、相関があることが示唆される。

相関係数は0.642であり、ある程度相関があることがわかる。

このようなデータを用いて和と差の分散を求めてみると、以下のように計算される。

addFAMが和の分散、diffFAMが差の分散である。

和の分散、差の分散が大きく異なっていることがわかるし、ぱっと見でそれぞれの分散を足しても、和の分散、差の分散、どちらの分散にも近くないのがわかる。

つまり、対応のあるデータの場合、分散の加法性が成り立たず、前後の標準偏差から、差の標準偏差を推定することはできない。

まとめ

介入前後などの変化量や差の標準偏差を、前と後それぞれの標準偏差から推定したいことはよくあるが、分散の加法性を用いて推定することができないかと検討していくも、推定できないという結論になった。

EZR公式マニュアル

EZRでやさしく学ぶ統計学 改訂3版 〜EBMの実践から臨床研究まで〜

参考サイト

分散の加法性

参考動画

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

リサーチクエスチョン探し?データ分析?論文投稿?、、、で、もう悩まない!

第1章臨床研究ではなぜ統計が必要なのか?計画することの重要性
  • 推定ってどんなことをしているの?
  • 臨床研究を計画するってどういうこと?
  • どうにかして標本平均を母平均に近づけられないか?
第2章:研究目的をどれだけ明確にできるのかが重要
  • データさえあれば解析でどうにかなる、という考え方は間違い
  • 何を明らかにしたいのか? という研究目的が重要
  • 研究目的は4種類に分けられる
  • 統計専門家に相談する上でも研究目的とPICOを明確化しておく
第3章:p値で結果が左右される時代は終わりました
  • アメリカ統計協会(ASA)のp値に関する声明で指摘されていること
  • そうは言っても、本当に有意差がなくてもいいの…?
  • なぜ統計専門家はp値を重要視していないのか
  • 有意差がない時に「有意な傾向があった」といってもいい?
  • 統計を放置してしまうと非常にまずい
第4章:多くの人が統計を苦手にする理由
  • 残念ながら、セミナー受講だけで統計は使えません。
  • インプットだけで統計が使えない理由
  • どうやったら統計の判断力が鍛えられるか?
  • 統計は手段なので正解がないため、最適解を判断する力が必要
第5章:統計を使えるようになるために今日から何をすれば良いか?
  • 論文を読んで統計が使えるようになるための5ステップ
第6章:統計を学ぶために重要な環境
  • 統計の3つの力をバランスよく構築する環境

以下のボタンをクリックして、画面に出てくる指示に従って、必要事項を記入してください。

この記事を書いた人

統計 ER ブログ執筆者

元疫学研究者

統計解析が趣味

コメント

コメント一覧 (1件)

  • Your videos are great and I’ve learned all your videos! If a single factor is divided into 3 subgroups, how to perform the Gray test of competitive events, is there a video about it? And multivariate analysis? Looking forward to your update, thank you!

コメントする

目次