2025年– date –
-
Rで回帰直線の検定と信頼区間:lm関数を使わずに計算する
単回帰分析では、目的変数と説明変数の間に直線的な関係があるかを調べる。Rのlm関数を使えば簡単に分析できるが、その裏側にある計算ロジックを理解することも重要だ。この記事では、lm関数に頼らずに回帰直線の主要な要素、つまり回帰係数の推定、その検... -
回帰分析の奥深さ:$t$ 値の2乗と$F$ 値が等しい理由を解き明かす!
回帰分析は、変数間の関係性を明らかにする強力な統計ツールだ。その結果を解釈する際、$t$ 値や $F$ 値といった統計量を目にすることが多いだろう。特に、単回帰分析においては、回帰係数の $t$ 値の2乗が、回帰モデル全体の有意性を検定する $F$ 値と常... -
平均値・標準偏差・症例数からt検定を行う:BSDAパッケージのtsum.testを解説
データ分析の現場では、生データが手元になく、要約統計量(平均値、標準偏差、症例数)のみが与えられている状況で統計的検定を行う必要に迫られることがある。特に、2つのグループ間の平均値に有意な差があるかを検証するt検定は頻繁に用いられる。 Rに... -
コホート研究のメタアナリシスにおける調整オッズ比と調整ハザード比の統合
コホート研究のメタアナリシスは、複数の独立した研究結果を統合することで、より信頼性の高いエビデンスを導き出す強力な手法である。特に、調整オッズ比 (Adjusted Odds Ratio: AOR) や 調整ハザード比 (Adjusted Hazard Ratio: AHR) のような、交絡因子... -
ベイズの力でエビデンスを統合する:ベイズメタアナリシス徹底解説
複数の研究結果を統合し、より強固なエビデンスを導き出すメタアナリシスは、医療や心理学、社会科学など多岐にわたる分野で重要な役割を果たしている。しかし、従来の頻度論的アプローチでは扱いにくい問題や、事前情報の活用といった点で限界があった。... -
ベイズ統計の核心:事前分布と事後分布を理解する
「データから何かを学ぶ」とき、私たちは常に何らかの「信念」を持っている。ベイズ統計学は、この「信念」をデータに基づいて更新していくという、非常に人間らしい思考プロセスを数学的に表現したものだ。今回は、その中心となる「事前分布」と「事後分... -
ベイズの理論からベイズ統計へ:不確実性を扱う強力なフレームワーク
私たちが生きる世界は不確実性に満ちている。明日の天気、新しい治療法の効果、マーケティングキャンペーンの成功率など、未来の出来事を完全に予測することはできない。しかし、この不確実性を数学的に捉え、合理的な意思決定を支援する強力なフレームワ... -
ベイズの定理とナイーブベイズ:機械学習の基礎を理解する
機械学習の分野には、様々な強力なアルゴリズムが存在する。中でも特に理解しやすいものの一つがナイーブベイズだ。ナイーブベイズは、あの有名なベイズの定理をベースにしており、スパムメールの分類から医療診断まで、幅広い分野で活用されている。この... -
マルコフ連鎖モンテカルロ法 (MCMC) を徹底解説!
「なんだか複雑そうな数式や理論が出てきそう…」そう思われた方もいるかもしれない。しかし、ご安心いただきたい。この記事では、マルコフ連鎖モンテカルロ法 (MCMC) という強力な統計的手法について、その基本から応用までを、できる限りわかりやすく解説... -
ROC曲線における最適なカットオフ値のブートストラップ信頼区間を理解する
医療診断、機械学習の分類問題など、多くの分野でROC曲線はモデルの性能評価に不可欠なツールだ。しかし、ROC曲線から「最適な」カットオフ値を決定するだけでは不十分な場合がある。そのカットオフ値がどの程度信頼できるのか、すなわち、異なるデータセ...