-
平均値・標準偏差・症例数からt検定を行う:BSDAパッケージのtsum.testを解説
データ分析の現場では、生データが手元になく、要約統計量(平均値、標準偏差、症例数)のみが与えられている状況で統計的検定を行う必要に迫られることがある。特に、2つのグループ間の平均値に有意な差があるかを検証するt検定は頻繁に用いられる。 Rに... -
コホート研究のメタアナリシスにおける調整オッズ比と調整ハザード比の統合
コホート研究のメタアナリシスは、複数の独立した研究結果を統合することで、より信頼性の高いエビデンスを導き出す強力な手法である。特に、調整オッズ比 (Adjusted Odds Ratio: AOR) や 調整ハザード比 (Adjusted Hazard Ratio: AHR) のような、交絡因子... -
ベイズの力でエビデンスを統合する:ベイズメタアナリシス徹底解説
複数の研究結果を統合し、より強固なエビデンスを導き出すメタアナリシスは、医療や心理学、社会科学など多岐にわたる分野で重要な役割を果たしている。しかし、従来の頻度論的アプローチでは扱いにくい問題や、事前情報の活用といった点で限界があった。... -
ベイズ統計の核心:事前分布と事後分布を理解する
「データから何かを学ぶ」とき、私たちは常に何らかの「信念」を持っている。ベイズ統計学は、この「信念」をデータに基づいて更新していくという、非常に人間らしい思考プロセスを数学的に表現したものだ。今回は、その中心となる「事前分布」と「事後分... -
ベイズの理論からベイズ統計へ:不確実性を扱う強力なフレームワーク
私たちが生きる世界は不確実性に満ちている。明日の天気、新しい治療法の効果、マーケティングキャンペーンの成功率など、未来の出来事を完全に予測することはできない。しかし、この不確実性を数学的に捉え、合理的な意思決定を支援する強力なフレームワ... -
ベイズの定理とナイーブベイズ:機械学習の基礎を理解する
機械学習の分野には、様々な強力なアルゴリズムが存在する。中でも特に理解しやすいものの一つがナイーブベイズだ。ナイーブベイズは、あの有名なベイズの定理をベースにしており、スパムメールの分類から医療診断まで、幅広い分野で活用されている。この... -
マルコフ連鎖モンテカルロ法 (MCMC) を徹底解説!
「なんだか複雑そうな数式や理論が出てきそう…」そう思われた方もいるかもしれない。しかし、ご安心いただきたい。この記事では、マルコフ連鎖モンテカルロ法 (MCMC) という強力な統計的手法について、その基本から応用までを、できる限りわかりやすく解説... -
ROC曲線における最適なカットオフ値のブートストラップ信頼区間を理解する
医療診断、機械学習の分類問題など、多くの分野でROC曲線はモデルの性能評価に不可欠なツールだ。しかし、ROC曲線から「最適な」カットオフ値を決定するだけでは不十分な場合がある。そのカットオフ値がどの程度信頼できるのか、すなわち、異なるデータセ... -
ブートストラップ因子分析:よりロバストな因子構造を探る
統計分析は奥深く、時には結果の信頼性に疑問を抱くこともある。特に、心理学や社会科学の分野で広く用いられる因子分析は、その性質上、サンプルの変動に影響を受けやすいという側面を持つ。しかし、もしその影響を最小限に抑え、より安定した、信頼性の... -
ブートストラップ法で平均値の95%信頼区間を求めよう!
「このデータ、本当に信頼できるのか?」そう思ったことはないだろうか。限られたデータから全体像を推測する際、統計的な「信頼区間」は非常に重要な概念である。しかし、信頼区間を算出するには、データの分布に特定の仮定が必要となるケースが少なくな...