-
ブートストラップ法:データの「再利用」で統計的推測を強化する
手元にあるデータだけでは、本当に信頼できる統計的な結論は出せないのではないか?そう悩んだことはないだろうか。特に、データ数が少ない場合や、複雑な統計量に関心がある場合、その悩みは尽きないかもしれない。そんな時に非常に強力なツールとなるの... -
臨床予測モデルの性能比較:最適な評価方法とは?
臨床現場でますます重要性を増している臨床予測モデル。病気の診断、予後の予測、治療効果の推定など、多岐にわたる場面で活用されている。しかし、複数のモデルが存在する場合、どのモデルが最も優れているのか、どのように判断すればよいのだろうか? 本... -
臨床予測モデルの誤設定を避けるために:信頼性の高い予測を目指す
医療現場において、臨床予測モデルは疾患の診断、予後の予測、治療法の選択など、多岐にわたる意思決定を支援する強力なツールである。しかし、これらのモデルが誤って設定された場合、その予測は患者の健康を危険にさらし、医療資源の無駄遣いにも繋がり... -
連続アウトカムの臨床予測モデル:予測精度を保証する内的・外的検証
臨床予測モデルは、医療現場で患者の将来を予測する強力なツールだ。特に血圧や血糖値のような連続データをアウトカムとするモデルは、病状の進行予測や治療効果の判定に役立つ。しかし、これらのモデルが実際に役立つためには、その予測能力が信頼できる... -
差分の差分法を理解する:因果推論の強力なツール
差分の差分法(Difference-in-Differences, DiD)は、政策変更や介入の効果を評価する際に非常に強力な統計的手法だ。この記事では、DiDの基本的な考え方から、その使い所、関連する統計手法との違い、DiDの核心である並行トレンドの仮定について詳しく解... -
操作変数法を徹底解説!見せかけの相関にだまされないための強力な武器
見せかけの相関に惑わされていないだろうか?世の中には、一見すると関係がありそうに見えて、実はそうではない現象がたくさん存在する。例えば、「アイスクリームが売れるとプールの事故が増える」という話を聞いたことはないだろうか?これは、アイスク... -
SEMにおけるMIMICモデル:潜在変数で測定誤差を考慮した分析を
SEM(構造方程式モデリング)は、心理学や社会学といった分野で複雑な因果関係を分析する際に非常に強力なツールとなる。しかし、アンケート調査などで収集されるデータには、回答者の個人的な解釈の違いや測定尺度の不完全性から生じる「測定誤差」がつき... -
媒介効果と調整効果:2つの「影響」を理解する
研究論文やデータ分析でよく耳にする「媒介効果」と「調整効果」。どちらも変数間の関係性を深く掘り下げる際に重要な概念であるが、その意味するところは大きく異なる。本記事では、これら二つの効果の違いを明確にし、具体的な例とRでの計算例を交えなが... -
媒介因子、媒介変数、媒介分析を徹底解説! データ分析の奥深さを知る
データ分析を進める上で、「ある原因が結果にどう影響するか」を直接的に見るだけでなく、その間に存在する「別の要因」の存在を意識することは非常に重要だ。この「別の要因」が、ときに原因と結果の関係性をより深く理解するための鍵となる。今回は、こ... -
媒介因子とは?研究デザインにおける重要な概念を徹底解説
疫学研究や社会科学研究において、ある事象が別の事象に影響を与えるメカニズムを解明することは非常に重要である。しかし、単に「AがBを引き起こす」というだけでなく、その間に別の要因が介在することがよくある。このような時に登場するのが「媒介因子...