医学論文の読み方書き方

予後因子と予測因子は医療統計としてどう違う?例を用いてわかりやすく解説

この記事では「予後因子と予測因子は医療統計としてどう違う?例を用いてわかりやすく解説」としてお伝えしていきます。

 

医学研究を学ぶと「予後因子」という用語に出くわすことがあります。

そして同じような用語として「予測因子」という用語に出くわすこともあります。

「予後因子」と「予測因子」はそれぞれどのような意味であり、どんな違いがあるのでしょうか?

例を踏まえて両者の違いを理解していきましょう!

 

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

医療統計における予後因子とは?

医療統計において、予後因子という言葉はどんな意味で使われているでしょうか?

結論から言うと、予後因子とは「病気の状態が未来に向かってどうなるのか?を判断するための因子」で使われます。

言い換えると、「病気の予後がどうなるか、を判断するための因子」ですね。

 

予後因子の例

例えば、がんにおいてリンパ節転移の有無は、多くの場合予後因子になります。

リンパ節転移があると予後が悪く、リンパ節転移がないと予後がいい、ということがあるからですね。

また、PS(パフォーマンスステータス)も予後因子になりうる場合が多いです。

PSが低いとその病気の予後がよく、PSが大きいと予後が悪い、という関係があるからです。

 

つまり予後因子とは「大枠の治療方針を決める際の判断材料となる因子」とも言えるかもしれません。

  • 入院した方がいいのか通院でいいのか
  • 手術の適用か薬物治療か

という治療方針には、予後因子の有無(もしくは大きさ)によって決まる場合があります。

 

医療統計で予後因子は交絡バイアスの引き金になる因子

医療統計では、予後因子は交絡バイアスの引き金になる因子です。

A群とB群の間で予後因子が群間で偏っている場合、交絡バイアスを引き起こすから

 

例えば、

  • 標準治療群でリンパ節転移の症例が多い
  • 新規治療群でリンパ節転移の症例が少ない

といった状況で、「結果として(死亡率などの)群間に差がなかった」としても。

その結果が

  • 本当に「治療効果の差がない」という結果なのか
  • 「治療効果に差はある」けど「予後因子が新規治療群に不利」だから効果が打ち消し合って差がなかったのか

という切り分けができないからです。

 

予後因子と予測因子の違いは?

予後因子がどういったものか、理解できたでしょうか?

「予後因子」と似たような用語として「予測因子」とがあります。

この両者の違いはなんでしょうか?

 

私が思うに、「予後因子」と「予測因子」は用語の違いです。

  • 「予後因子」:「予後予測因子」の意味で使われることが多い
  • 「予測因子」:「効果予測因子」の意味で使われることが多い

 

つまり、予後因子も「予後を予測する因子」としては予測因子でもあります。

ですが一般的に「予測因子」といった場合に、「ある特定の治療が」効果があるかどうかを予測するための因子、ということを指して使われることが多いです。

 

予測因子の例

例えば、乳がんにおけるハーセプチンという薬物治療があります。

ハーセプチンはHER2陽性に顕著に効果あり、HER2陰性にはそれほど効果はない薬剤。

つまり、HER2という因子がハーセプチンの効果を予測する因子になっている、ということです。

 

ちなみに、HER2が陽性だと予後が悪いということも知られています。

なので、HER2という因子は、「乳がんの予後因子であり」かつ「ハーセプチンの予測因子でもある」と言うことができます。

 

医療統計的には予測因子は交互作用をもたらす因子

予測因子は、医療統計としては交互作用をもたらす因子になります。

交互作用とは「2つの因子の組み合わせによって生じる相乗効果(拮抗効果)」のこと。

ここでいう2つの因子とは

  1. 予測因子
  2. 群(治療の違い)

の2つです。

 

例えば「HER2陽性 or 陰性」と「ハーセプチン or プラセボ」の交互作用を考えてみると、以下の4つのパターンがあることがわかります。

  1. 「HER2陽性」かつ「ハーセプチン」:非常に効果あり
  2. 「HER2陰性」「ハーセプチン」:効果なし
  3. 「HER2陽性」「プラセボ」:効果なし
  4. 「HER2陰性」「プラセボ」:効果なし

「HER2陽性」かつ「ハーセプチン」である場合に非常に効果があるため、相乗効果がある、ということ。

相乗効果がある組み合わせがあることを、統計的には交互作用あり、と言っているのです。

 

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

まとめ

いかがでしたか?

この記事では「予後因子と予測因子は医療統計としてどう違う?例を用いてわかりやすく解説」としてお伝えしました。

予後因子とは、病気の予後がどうなるか、を判断するための因子であり、群間で偏ると交絡バイアスにつながります。

予測因子とは、「ある特定の治療が」効果が出るかどうかを予測する因子であり、予測因子があると交互作用につながります。

両者の違いが明確になったのなら幸いです!

今だけ!いちばんやさしい医療統計の教本を無料で差し上げます

第1章:医学論文の書き方。絶対にやってはいけないことと絶対にやった方がいいこと

第2章:先行研究をレビューし、研究の計画を立てる

第3章:どんな研究をするか決める

第4章:研究ではどんなデータを取得すればいいの?

第5章:取得したデータに最適な解析手法の決め方

第6章:実際に統計解析ソフトで解析する方法

第7章:解析の結果を解釈する

 

もしあなたがこれまでに、何とか統計をマスターしようと散々苦労し、何冊もの統計の本を読み、セミナーに参加してみたのに、それでも統計が苦手なら…

私からプレゼントする内容は、あなたがずっと待ちわびていたものです。

 

↓今すぐ無料で学会発表や論文投稿までに必要な統計を学ぶ↓

↑無料で学会発表や論文投稿に必要な統計を最短で学ぶ↑

COMMENT

メールアドレスが公開されることはありません。