医学論文の読み方書き方

フォレストプロットとはどんなグラフ?見方をわかりやすく解説

今回の記事は「フォレストプロットとはどんなグラフ?見方をわかりやすく解説」ということでお伝えします。

論文を読んでいると、フォレストプロットって出てきますよね。

何となく眺めてはいるものの、フォレストプロットから引き出せる情報はどこまであるのか?ということが疑問になったりもするかなと思います。

 

そこで今回の記事では、

  • フォレストプロットとはどんなグラフなのか?
  • ハザード比を例にしたフォレストプロットの見方(サブグループ解析)

について詳しく、わかりやすく解説していきます!

 

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

フォレストプロットとはどんなグラフ?

まずはフォレストプロットの概要についてお話しします。

結論から言うと、フォレストプロットは以下のようなグラフのこと。

Wikipediaより引用)

フォレストプロットは元々メタアナリシスで用いられた図式化の一つ。

上記のフォレストプロットを見てもわかるように、個々の研究結果の推定値と信頼区間(通常は95%信頼区間)を全体の結果(Summary measure)とともにグラフ化したものです。

個々の結果が木であり、木が集まったグラフということで、フォレストプロットと呼ばれているようですね。

 

フォレストプロットのスタートはメタアナリシスのようですが、今ではサブグループ解析の視覚化のグラフとしても使われています。

例えば、以下のようなグラフです。

 

フォレストプロットはどんな目的でなぜ使われているのか?

メタアナリシスを例にして、フォレストプロットがどんな目的で使われてきたのかを整理しましょう。

メタアナリシスとはそもそも「同じ問題を扱った多数の科学的研究から一つの推定値を得ること」を目的としています。

つまり、個々の研究結果を眺めてもわからないから、一つの結果としてまとめて一つの結論を得た方がわかりやすい、ということでスタートしました。

でもそうは言っても、やっぱり個々の研究結果がどんな結果だったのかを同時に評価することも重要です。

そこで出てくるのがフォレストプロット。

 

メタアナリシスにおいてフォレストプロットの見方は、「全体の結果に対して個々の結果がばらついていないか?」という視点で見ることが重要です。

個々の結果はすでに論文化されている結果なので、今更とやかく言うことはありません。

あくまで重要なのは全体の結果であり、全体の結果からの乖離度合い(ばらつき度合い)がどうなのか、ということなのです。

どの研究結果も全体の結果と同じ方向にあればOKですし、基準線(帰無仮説となる線)を基準にして左右にバラバラするような結果であれば、考察が必要になります。

 

既に紹介した以下のフォレストプロットだと、基準線はOR=1の線。

そこを基準にして、全体も個々の結果も推定値は右側にあります。

そのため、全ての研究結果が全体の結果と同じ方向にある、ということが言えますね。

どれだけ個々の研究がばらついているかは「異質性の検定」で見ることが可能。

 

ハザード比を例にしてフォレストプロットの見方をわかりやすく解説

フォレストプロットが何なのかがわかったところで、今度はサブグループ解析におけるフォレストプロットを例にして見方を学んでいきましょう。

今回の論文は「A Randomized Trial of Intensive versus Standard Blood-Pressure Control.」という論文。

このFig4にサブグループ解析のフォレストプロットがあります。

サブグループ解析のフォレストプロットで共通の重要事項は3つ。

  1. 基準線(帰無仮説となる線)は実線で引かれる
  2. 全体集団の結果は点線で引かれる
  3. 一番右側に交互作用の検定(P value for Interaction)が付いている

 

まず、基準線は実線の縦線になっていることがわかります。

今回の論文ではハザード比(HR)をアウトカムの指標としているため、「群間で差がない」はハザード比が1の場合。

そのため、ハザード比が1の部分に実線が引かれているのです。

 

そして、全体集団(Overall)の結果は点線で引かれていることがわかります。

今回の場合は、HRが0.75付近に全体集団の結果がありますね。

 

最後に、一番右側に交互作用の検定(P value for Interaction)が記載されているということ。

サブグループ解析は交互作用があるかどうかを確認しているため、交互作用の検定(P value for Interaction)を記載している論文もありますね。

ただし、最近の傾向としては交互作用の検定(P value for Interaction)はあまり記載しない方針の論文も多いため、この部分はない場合もあります。

 

メタアナリシスのフォレストプロットでも説明しましたが、サブグループ解析でのフォレストプロットも、重要な見方は「全体の結果に対して個々の結果(各サブグループの結果)がどれだけばらついているのか」という観点です。

もう少し具体的に言えば、全体集団の結果に対して、基準線の反対側にあるようなサブグループがないか?という見方が重要なのです。

 

サブグループ解析のフォレストプロットの場合、各サブグループでハザード比の信頼区間が1をまたぐかどうかは重要ではない

サブグループ解析のフォレストプロットの場合に重要な見方としては「各サブグループの結果でハザード比の信頼区間が1をまたぐかどうかはどうでもいい」ということ。

95%信頼区間と統計的な有意差の関係を知っている方であれば、ハザード比の信頼区間が1をまたぐかどうかについて気になるかもしれません。

しかし、各サブグループでの結果で、ハザード比の信頼区間が1をまたぐかどうかは重要なことではないのです。

というのも、各サブグループは全体の例数より必ず少ないため、95%信頼区間は必ず広くなるためです。

あくまで95%信頼区間と統計的な有意差の関係は全体集団に対してのみであり、サブグループの結果に対しての見方ではないことを認識しましょう。

 

今までの解説をグラフ上に記載したのが以下の図です。

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

フォレストプロットについてまとめ

今回の記事は「フォレストプロットとはどんなグラフ?見方をわかりやすく解説」ということでお伝えしました。

  • フォレストプロットとはどんなグラフなのか?
  • ハザード比を例にしたフォレストプロットの見方(サブグループ解析)

について整理できたのなら良かったです!

 

こちらの記事は動画でも解説していますので、併せてご確認くださいませ。

今だけ!いちばんやさしい医療統計の教本を無料で差し上げます

第1章:医学論文の書き方。絶対にやってはいけないことと絶対にやった方がいいこと

第2章:先行研究をレビューし、研究の計画を立てる

第3章:どんな研究をするか決める

第4章:研究ではどんなデータを取得すればいいの?

第5章:取得したデータに最適な解析手法の決め方

第6章:実際に統計解析ソフトで解析する方法

第7章:解析の結果を解釈する

 

もしあなたがこれまでに、何とか統計をマスターしようと散々苦労し、何冊もの統計の本を読み、セミナーに参加してみたのに、それでも統計が苦手なら…

私からプレゼントする内容は、あなたがずっと待ちわびていたものです。

 

↓今すぐ無料で学会発表や論文投稿までに必要な統計を学ぶ↓

↑無料で学会発表や論文投稿に必要な統計を最短で学ぶ↑

COMMENT

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です