SPSSで多重ロジスティック回帰分析をわかりやすく!結果の見方や解釈まで

SPSSで多重ロジスティック回帰分析をわかりやすく!結果の見方や解釈まで

この記事では統計ソフトSPSS多重ロジスティック回帰分析の実施方法と分析結果の解釈を行います。

多重ロジスティック回帰分析は多変量解析の一種で、重回帰分析の考え方と非常に似ています。

ですので、先に重回帰分析を理解しておいた方が、多重ロジスティック回帰分析をスムーズに理解できるかもしれません。

どうしても先に多重ロジスティック回帰分析を理解したいという方は、この記事の後でもいいので重回帰分析をしっかり理解して下さい。

それでは多重ロジスティック回帰分析について一緒に考えていきましょう!

>>もう統計で悩むのは終わりにしませんか? 

↑期間・数量限定で無料プレゼント中!

目次

多重ロジスティック回帰分析とは?

多重ロジスティック回帰分析は、最近医学研究で類繁に使われるようになった手法です。

重回帰分析の従属変数は連続変数(比率尺度間隔尺度段階数の多い順序尺度)です。

それに対して、多重ロジスティック回帰分析の従属変数は2値のカテゴリカルデータ(例:男性・女性、患者群・健常者群など)になります。

多重ロジスティック回帰分析の利点はデータの型や分布に、あまり厳密さを要さない点です。

 

多重ロジスティック回帰分析のメリット

重回帰分析は、データが間隔尺度または比率尺度でなければ適用できません。

また重回帰分析は、データが正規分布に従うという仮定の下で理論的に構築された手法です。

ですので、重回帰分析を実施するにあたっては、非常に制約が多く、理論に従わないデータがあったとしても、やむを得ず重回帰分析を行うしかないというのが現状としてあります。

しかし、多重ロジスティック回帰分析は重回帰分析と比較して制約条件が少ない為、分析しやすい多変量解析と言えます。

多重ロジスティック回帰分析は、単にロジスティック回帰分析とか、ロジスティック分析とよばれることもあります。

 

多重ロジスティック回帰分析の適用の条件とは?

  • 独立変数(説明変数)には、あらゆるデータが適用できる。
  • 従属変数(目的変数)は、0-1型の2値データでなくてはならない。

 

SPSSで多重ロジスティック回帰分析を実践する

それでは多重ロジスティック回帰分析を行っていきましょう。

まずは今回使用するデータを読み込みます。

今回のデータは、

従属変数

★生存期間(700日未満群、700日以上群)★

独立変数に、

●治療薬(治療薬A、治療薬B)

●性別(男性、女性)

●年齢

とし多重ロジスティック回帰分析を行います。

 

SPSSに直接データを打ち込む場合は[ファイル]→[新規作成]→[データ]の順に進みます。

既にデータ入力が終了している場合は[ファイル]→[開く]→[データ]で任意のデータを選択します。

Excelにデータを入力している場合は[ファイル]→[データのインポート]→[Excel]の順に進み、データをインポートします。

 

データをセットできたら、下図のように[分析]→[回帰]→[二項ロジスティック]を選択するとウィンドウが表示されます。

SPSSで多重ロジスティック回帰分析を実践する

下図のボックスで従属変数生存期間を入れます。

独立変数としたい残りの項目すべてを共変量に異動します。

変数の選択方法[方法(M)]の右にある⇩をクリックして[変数増加法:尤度比]を選択します。

SPSSで多重ロジスティック回帰分析を実践する

オプション(O)は下図と同じ所をチェックします。
[外れ値(0)]3を入力します。

[EXP(B)の信頼区間]オッズ比信頼区間を出力する設定で✔を入れた後、

95または99を入力.ここでは”95“を入力します。

続行⇒OKをクリックすれば結果が出力されます。

SPSSで多重ロジスティック回帰分析を実践する

SPSSでの多重ロジスティック回帰分析の結果の読み方

下図のステップ2のモデルはモデルX2であり、pく0.05であれば作成されたモデル式の有意性が保証されます。

ここではp=0.01ですので有意差ありとします。

有意でなければ再度解析しなおします。

 

SPSSでの多重ロジスティック回帰分析の結果の読み方

②の係数の有意性を見ます。全て(定数は無視)p<0.05であれば望ましい

この例では年齢、性別ともp<0.05で有意になります。

有意だった場合③に進みます。

 

③の[EXP(B)]はオッズ比です。

1よりも大きいほど、または小さいほど影響力が強い指標です

ただし、連続変数のオッズ比とカテゴリカル変数のオッズ比の解釈は多少異なります

連続変数であれば、1単位上昇した際に変化するオッズ比を示しており、カテゴリカル変数のであれば、参照となる水準に比べてどれぐらいのオッズ比なのかを示しています。

例えば年齢はオッズ比0.964ですので、1歳上昇するごとに0.964だけ変化します。2歳上昇すれば、0.964*0.964だけ変化します。

性別は2.799ですから男性(もしくは女性)に比べて女性(もしくは男性)では2.799だけ変化があることを示しています。

上記の通り、説明変数が変わるとオッズ比の意味合いが変わるため、因子間でのオッズ比の比較は単純にはできません。

P値や信頼区間を含めて総合的に判断することが重要です。

 

④はオッズ比の信頼区間です。

95%信頼区間が年齢[0.932. 0.997]、性別[1.048. 7.477]範囲に1を含みませんので有意となります。

⑤のBは係数値です。予測(モデル)式を作成する際に使用します(今回は使用しません)。

SPSSでの多重ロジスティック回帰分析の結果の読み方

下図⑥のHosmer-Lemeshowの検定p<0.05であればモデルは適合していません。

今回はp≧0.05なのでモデルは適合していると言えます。

 

SPSSでの多重ロジスティック回帰分析の結果の読み方

下図の⑦は判別分割表です。

[全体のパーセント]100%に近いほど良いと判断します。

今回の結果では64.9%の症例が正しく予測されている事を意味します。

 

>>もう統計で悩むのは終わりにしませんか? 

↑1万人以上の医療従事者が購読中

SPSSでロジスティック回帰まとめ

今回は多項ロジスティック回帰分析を実施しました。

まずは正規分布かどうか等の制約がありませんので、比較的使用しやすい分析方法と言えます。

従属変数が2値のデータである事がポイントです。

独立変数の有意差だけではなく、得られたモデル式の適合度もしっかり見る事が重要です。

実際に分析して理解を深めてみましょう。

 

>>SPSSでT検定を実施する方法

>>SPSSで分散分析を実施する方法

>>SPSSでカイ二乗検定を実施する方法

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

リサーチクエスチョン探し?データ分析?論文投稿?、、、で、もう悩まない!

第1章臨床研究ではなぜ統計が必要なのか?計画することの重要性
  • 推定ってどんなことをしているの?
  • 臨床研究を計画するってどういうこと?
  • どうにかして標本平均を母平均に近づけられないか?
第2章:研究目的をどれだけ明確にできるのかが重要
  • データさえあれば解析でどうにかなる、という考え方は間違い
  • 何を明らかにしたいのか? という研究目的が重要
  • 研究目的は4種類に分けられる
  • 統計専門家に相談する上でも研究目的とPICOを明確化しておく
第3章:p値で結果が左右される時代は終わりました
  • アメリカ統計協会(ASA)のp値に関する声明で指摘されていること
  • そうは言っても、本当に有意差がなくてもいいの…?
  • なぜ統計専門家はp値を重要視していないのか
  • 有意差がない時に「有意な傾向があった」といってもいい?
  • 統計を放置してしまうと非常にまずい
第4章:多くの人が統計を苦手にする理由
  • 残念ながら、セミナー受講だけで統計は使えません。
  • インプットだけで統計が使えない理由
  • どうやったら統計の判断力が鍛えられるか?
  • 統計は手段なので正解がないため、最適解を判断する力が必要
第5章:統計を使えるようになるために今日から何をすれば良いか?
  • 論文を読んで統計が使えるようになるための5ステップ
第6章:統計を学ぶために重要な環境
  • 統計の3つの力をバランスよく構築する環境

以下のボタンをクリックして、画面に出てくる指示に従って、必要事項を記入してください。

コメント

コメント一覧 (1件)

コメントする

目次